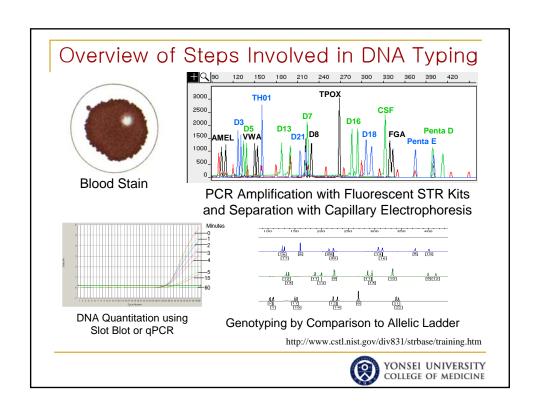
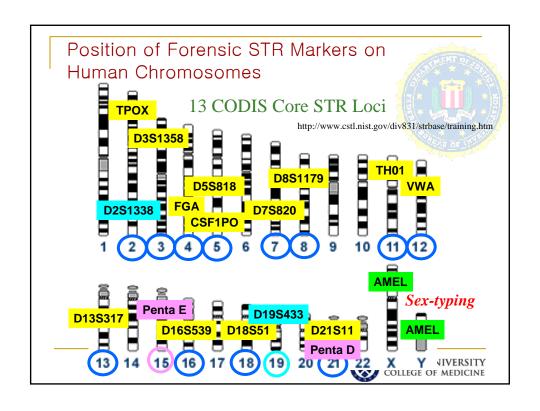
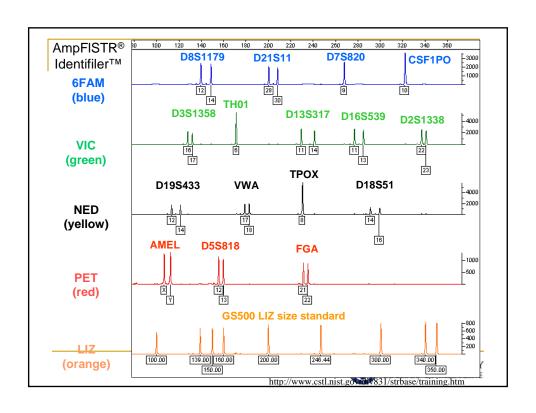
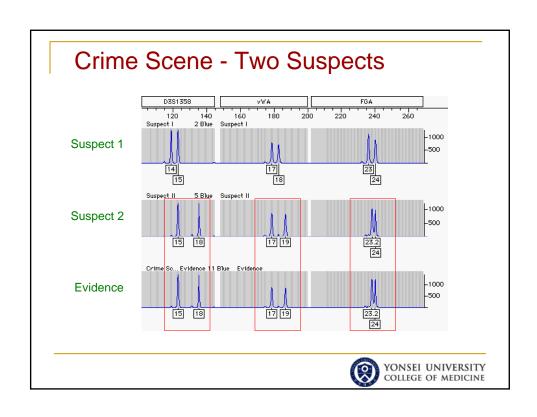
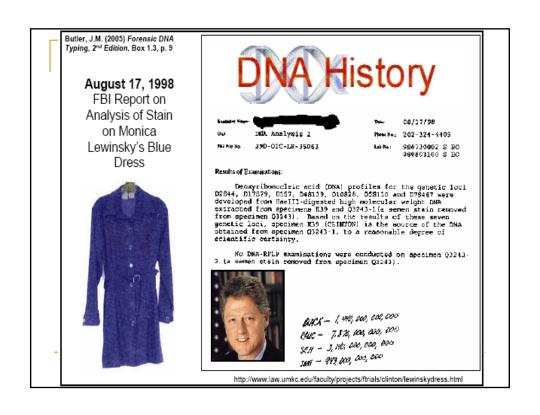

범죄자 유전자은행과 과학수사


연세대학교 의과대학 법의학과 신 경 진


발표 내용


- 유전자검사의 개념과 원리
- 유전자은행의 개요
- 증거의 무결성
- 유전자검사 기관 질관리
- 유전자은행 구성 유전자
- 유전자 검사 및 검색에서의 과제
- 데이타베이스 관리위원회
- 요약





범죄자 유전자은행 도입 경과

"DNA 신원확인정보의 이용과 보호에 관한 법률"

- '08. 7. ~ 10. 대검, 법안 초안마련
- '09. 3. 31. 검, 경 수정안 법무부에 송부
- '09. 5. 27. 법률안 입법예고
- '09. 10. 29. 국무회의 의결 거쳐 국회 제출
- '09. 12. 29. 국회 본회의 통과
- '10. 1. 25. 법률 공포
- '10. 7. 26. 시행령 공포, 시행

대상 및 관리주체

- 주요 범죄자
 - □ 살인, 강도, 강간, 미성년자 약취유인, 방화, 상습 폭력, 청소년 대상 성범죄 등...
- 관리주체
 - □ 검찰총장 : 유죄 확정자
 - □ 경찰청장: 구속 피의자 및 범죄현장 등의 시료

범죄자 유전자은행의 기대 효과

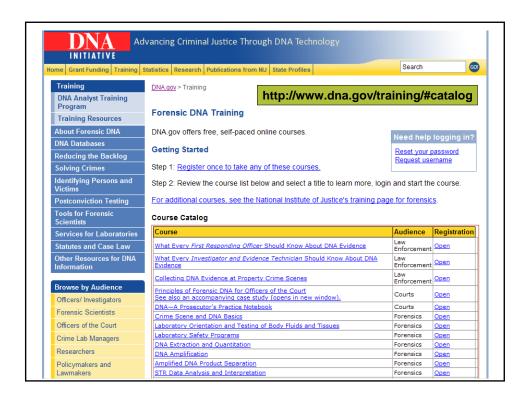
- 범죄 해결 가능성 향상
- 범죄의 조기 해결 및 연속적인 범죄의 예방
- 수사의 효율성 증대
- 미제 범죄와의 연관성 확인
- 무고한 용의자 배제를 통한 인권 보장

이숭덕(2010), 대검연구용역 보고서

증거의 무결성

- 증거물이 어떻게 수집되어 누구에 의해 분석, 보존 되었는가를 증명할 수 있도록 문서로 기록하는 '절차 연속성(Chain of Custody) 방안'이 필요하다.
- Chain of Custody는 현재의 증거가 최초 수집 시점과 동일한 상태로 계속되어 있다는 것(증거의 무결성)을 보증하기 위한 가장 중요한 요소가 된다.

절차 개발 및 교육

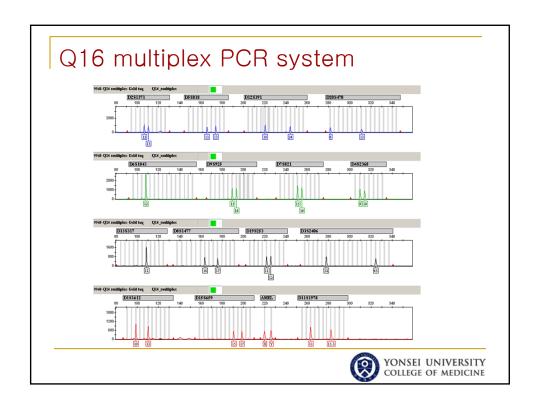

- 시료 채취자
 - □ 시료의 수집, 운반, 보관
 - □ 오염에 대비
 - □ 개인정보 유출 방지
- 유전자 분석가
 - □ 유전자 분석 방법의 절차, 기술
 - □ 미량 DNA의 분석 방법 및 해석
 - □ 혼합시료의 분석 방법 및 해석

DNA Backlog

- 유전자검사 요구 > 유전자검사 능력
- 증거물의 홍수
 - □ 범죄현장에서 수집되는 증거물의 증가
 - □ 유용한 증거물이 수집되고 있는가?
- ▶ 교육프로그램의 개발 및 운영!

유전자은행 구축 대상 유전자

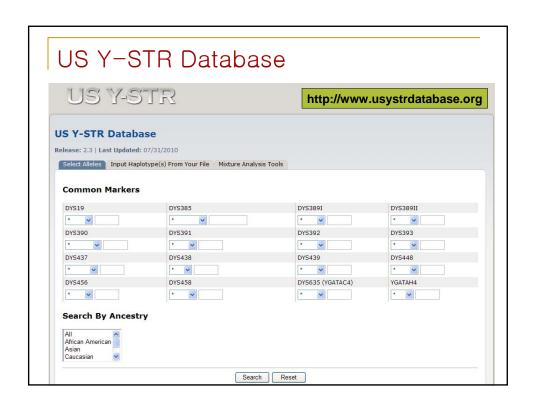
- 한국인에서 적절한 식별력을 갖는 유전자의 선정
 - Combined DNA Index (CODIS)
 - Interpol Standard Set of Loci (ISSOL)
 - European Standard Set (ESS)
- 유럽과 미국에서의 대상 유전자 확대
- Y 염색체 STR, 미토콘드리아 DNA 정보 사용
 - □ 부가적인 정보 제공
 - □ 용의자 배제에 유용

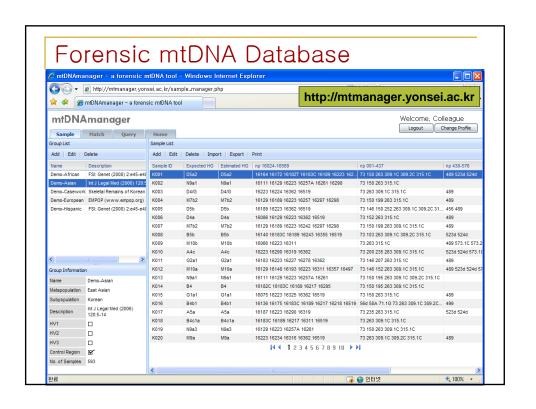


STR Loci Present in Commercial Kits							
	PP16	Identifiler	MiniFiler	ESX/ESI17	NGM	SEfiler	SGM Plus
	TPOX CSF1PO D5S818 D7S820 D13S317	TPOX CSF1PO D5S818 D7S820 D13S317	CSF1PO D7S820 D13S317				
	FGA vWA D3S1358 D8S1179 D18S51 D21S11 TH01 D16S539	FGA vWA D3S1358 D8S1179 D18S51 D21S11 TH01 D16S539	FGA D18S51 D21S11 D16S539	FGA vWA D3S1358 D8S1179 D18S51 D21S11 TH01 D16S539	FGA vWA D3S1358 D8S1179 D18S51 D21S11 TH01 D16S539	FGA vWA D3S1358 D8S1179 D18S51 D21S11 TH01 D16S539	FGA vWA D3S1358 D8S1179 D18S51 D21S11 TH01 D16S539
		D2S1338 D19S433	D2S1338	D2S1338 D19S433	D2S1338 D19S433	D2S1338 D19S433	D2S1338 D19S433
U.S. is looking to expand the core loci (18-20 total) to provide more international overlap				D12S391 D1S1656 D2S441 D10S1248 D22S1045	D133433 D12S391 D1S1656 D2S441 D10S1248 D22S1045		2130400
Penta D Penta E				SE33 SE33 http://www.cstl.nist.gov/div831/strbase/			

유전자검사 Kit의 유효성(validation) 평가

- 유효성 평가 기준 규정
- 기존의 상업용 Kit에 대한 평가
- 새로운 유전자검사 Kit에 대한 평가
- ❖ 국산 유전자검사 Kit의 개발
 - 유전자검사 비용 감소
 - 한국인에 최적화된 Kit 사용





Y-STR, mtDNA

- 분석 대상 유전자 범위 설정
 - □ Y-STR : 한국인의 식별에 적절한 유전자 선정
 - □ mtDNA: 과변이영역, 조절영역, 코딩 영역
- 분석 방법의 다양화 (특히, mtDNA)
 - □ 기존 모세관 전기영동법
 - Mass Spectrometery
 - Next Generation Sequencing

통계량 제시

- 한국인의 표준 대립유전자 빈도
 - □ 상염색체 STR에 대한 자료
 - □ Y-STR, mtDNA 자료
- 대표적 통계량
 - Random Man Not Excluded (RMNE)
 - Likelihood Ratio (LR)

유전자검사 기관의 질관리(QA/QC)

- 질관리 프로그램의 내용
 - □ 실험실에 관련된 사항
 - □ 인적자원에 관련된 사항
 - □ 설비. 시약에 관련된 사항
 - □ 절차, 행정에 관련된 사항
- 질관리 감독기관 선정 및 Guideline 제정

유전자 검사 및 검색에서의 과제

- 분석과 결과 해석이 어려운 유전자검사
 - □ 미량의 유전자 분석
 - □ 혼합 시료에서의 유전자 분석
- 친족 검색 (Familial Search)
 - □ 도입 여부에 논의가 필요
- Guideline 제정
 - □ 기술적, 법률적 대처
 - □ 통계적 기초 자료 및 해석법 제시

데이타베이스 관리위원회

- 심의기관
 - □ 법 제14조 제1항 데이터베이스 관리, 운영에 관한 다음 각 호의 사항을 **심의**하기 위하여...
- 관리위원회의 위상 강화 필요성 논의
 - □ 데이타베이스의 이원적 운영 상황
 - □ 윤리적 문제에 대처
- 실무적인 문제를 다루는 기술위원회의 구성

요약

- 우리나라 범죄자 유전자은행의 발전을 위해
 - □ 증거의 무결성 확보 방안
 - □ 유전자검사 기관의 질관리
 - □ 대상 유전자의 선정 및 통계량 제시
 - □ 난해한 유전자 분석, 친족 검색 기초 자료 확보
 - □ 데이타베이스 관리위원회의 위상 강화
- 에 대한 지속적인 연구 개발 및 고찰이 따라야 할 것으로 사료된다.

A *highly dangerous mystique* that surrounds DNA is :

'If there is DNA evidence that matches the suspect then he must be guilty of the offence'.

Gill P and Buckleton J (2010), FSI: Genetics

감사합니다.

kjshin@yuhs.ac