

Improved DNA extraction from old skeletal remains by combining total demineralization and silica-based extraction and concentration

Myung Jin Park Hwan Young Lee · Na Young Kim · Jeong Eun Sim · Woo Ick Yang · Kyoung-Jin Shin

Department of Forensic Medicine and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea

Introduction

A number of DNA extraction methods have been designed to obtain as much DNA as possible from old skeletal remains while minimizing the co-extraction of PCR inhibitors. Among many methods, a protocol which uses phenol/chloroform extraction followed by DNA concentration by a Centricon[™] microconcentrator has been most widely used, but a protocol which uses a small-scale silica-based spin column has proven more efficient for the recovery of pure DNA. Recently, a complete demineralization method, which results in full physical dissolution of the bone samples, was proposed to maximize DNA yield, and a silica extraction method using a commercial large-scale kit was also reported to produce increased DNA yield while efficiently removing PCR inhibitors. In addition, the comparison of a number of ancient DNA to silica via guanidinium thicoyanate for DNA purification. However, all of these recently proposed methods still have some drawbacks such as using phenol/chloroform extraction method, using Centricon[™] microconcentrator for DNA concentration or using silica powders for DNA purification. Phenol/chloroform extraction and Centricon[™] microconcentrator for DNA concentration or using silica powders for DNA purification. Phenol/chloroform extraction methods using quantitative RT-PCR to assess DNA yield and removal of PCR inhibitors and present a simple and highly effective DNA extraction method for genotyping of skeletal remains that combines the most efficient methods from each step of the process.

Materials and Methods

DNA Samples

Human genomic DNA (Promega, Madison, WI) to test several DNA concentration/extraction methods. Artificially degraded DNA was prepared by digesting 6.4 µg of human genomic DNA with 0.01 unit of DNase I for 30 min. To compare bone extraction methods, long bones from 55-year-old skeletal remains of 10 Korean War (1950-1953) victims were used.

Quantitative RT-PCR

Human genomic DNA content was determined using the Quantifiler™ Human DNA Quantification Kit and 7500 Real-Time PCR System (Applied Biosystems, Foster City, CA) with reduced-scale reactions consisting of 5 µl of Primer Mix, 6 µl of PCR Reaction Mix, and 1 µl of DNA extract in a final reaction volume of 12 µl.

DNA Recovery and Inhibitor Test

DNA Concentration from 2 ml of Sample to 50 µl

Ultrafiltration concentration		Silica-based column concentration				
Centricon® YM-30	Centricon® YM-100	QIAamp® DNA Mini kit	QIAamp® Mini spin	QIAquick® PCR		
			column + PB/PE buffer	Purification kit		
2 ml of intact, degraded human genomic DNA solutions or inhibitors with genomic DNA solutions						
Ultracel YM-30	Ultracel YM-100	+ 2 ml of AL buffer/EtOH + 10 ml of PB buffer				
		QIAamp [®] Mini	spin Column	QIAquick® spin column		
Centrifuge 3500 x g	Centrifuge 2000 x g		Vacuum pump			
Twice with 2	Twice with 2 ml of ddH ₂ O 750 µl of AW1/AW2 buffer 750 µl of PE buffer		PE buffer			
50 μl of ddH ₂ O						

DNA Extraction from Old Skeletal Remains

	Method A ^a	Method B	Method C		
Demineralization	Incomplete	Complete			
Lysis buffer	15 ml of ATL buffer, 0.02 M DTT 10 mg Proteinase K	15 ml of 0.5 M EE 3 mg Prote	DTA, 0.5% SDS einase K		
1st Incubation		56°C, 48 hours			
2nd Incubation	+ 14 ml of AL buffer	+ 14 ml of AL buffer + 18 ml of AL buffer, 3 mg Proteinase K			
	70°C, 1	56°C, 1 hour			
DNA recovery	Silica-based column extraction				
Column	QIA	QIAamp® Maxi spin column (Qiagen)			
Buffer	15 - 22 ml 15 ml of AW1	15 - 22 ml of EtOH 15 ml of AW1/AW2 buffer			
Elution	2 ml of ddH ₂ O				
Concentration	QIAamp [®] Mini spin column + PB/PE buffer				

^a Method A was based on Davoren et al. (Croat Med J. 2007;48;478-485) with substantial modifications using a QIAamp[®] Mini spin column with PB/PE buffers instead of using a Centriplus YM-100 column.

Results

Results of Quantitative RT-PCR Comparing Different DNA Concentration Methods Using Intact, Degraded Genomic DNA and Varied Concentrations of Hematin / Humic Acid

	Centricon [®] YM-30		Centricon [®] YM-100		QIAamp [®] DNA Mini kit		QIAamp [®] Mini spin column + PB/PE buffer		QIAquick [®] PCR Purification kit	
Amountª (per 2 ml)	Recovery ^b (%)	IPC C ₊ c	Recovery ^b (%)	IPC C ₊ °	Recovery ^b (%)	IPC C ₊ c	Recovery ^b (%)	IPC C ₊ °	Recovery ^b (%)	IPC C ₊ c
Human Genomic	: DNA (25 ng)			·		·		·		·
Intact	10.2 ± 4.77	27.5 ± 0.08	7.0 ± 1.22	27.7 ± 0.15	34.7 ± 6.49	27.6 ± 0.11	38.9 ± 12.27	27.7 ± 0.09	27.3 ± 7.36	27.7 ± 0.09
Degraded	12.9 ± 6.22	27.6 ± 0.07	9.1 ± 4.51	27.7 ± 0.10	42.5 ± 9.32	27.5 ± 0.11	50.8 ± 12.24	27.4 ± 0.07	28.0 ± 11.06	27.6 ± 0.10
Hematin with DN	IA (50 ng)									
12 nmole	29.7 ± 5.22	27.9 ± 0.18	2.8 ± 0.12	27.6 ± 0.18	46.6 ± 6.11	27.6 ± 0.02	34.7 ± 6.27	27.6 ± 0.06	32.6 ± 9.36	27.6 ± 0.08
30 nmole	19.6 ± 3.27	29.6 ± 1.17	10.0 ± 4.73	27.8 ± 0.08	57.5 ± 3.06	27.7 ± 0.10	42.6 ± 9.04	27.7 ± 0.10	33.0 ± 8.80	27.8 ± 0.07
60 nmole	n.d.ª	n.d.ª	11.8 ± 0.68	27.9 ± 0.21	50.3 ± 16.41	27.6 ± 0.09	44.9 ± 12.18	27.6 ± 0.15	26.7 ± 2.59	27.8 ± 0.07
Humic acid with	DNA (50 ng)									
1.5 µg	6.0 ± 4.06	27.6 ± 0.14	2.9 ± 0.59	27.6 ± 0.11	44.8 ± 7.05	27.5 ± 0.04	47.5 ± 3.70	27.5 ± 0.10	39.5 ± 16.90	27.5 ± 0.10
7.5 µg	7.5 ± 1.01	36.7 ± 3.09	7.6 ± 3.89	27.9 ± 0.13	39.7 ± 12.90	27.7 ± 0.17	49.5 ± 3.24	27.6 ± 0.05	38.9 ± 3.05	27.6 ± 0.13
15.0 µg	n.d.ª	n.d.ª	2.1 ± 0.58	27.9 ± 0.16	32.1 ± 14.66	27.7 ± 0.11	34.7 ± 7.46	27.5 ± 0.10	27.3 ± 7.00	27.6 ± 0.08
30.0 µg	n.d.ª	n.d. ^d	3.8 ± 0.44	29.7 ± 0.94	18.5 ± 7.31	30.1 ± 1.56	23.8 ± 5.95	27.7 ± 0.19	17.3 ± 9.19	27.7 ± 0.11
a Amount in the init	ial DNA solutions,	^b DNA recovery rate	es (relative percentag	e) obtained by com	paring concentrations	of final DNA extracts	s with those of the initia	al DNA solutions wi	ithout inhibitors, ° Th	reshold cycles for

log phase amplification of IPC, ^d not determined

Results of Quantitative RT-PCR Comparing Different DNA Extraction Methods for Old Skeletal Remains

Sample	Mass (g)	Method A		Metho	od B	Method C	
		Concentration (pg/µl)	IPC C _T ª	Concentration (pg/µl)	IPC C _T ª	Concentration (pg/µl)	IPC C _T ª
1	0.40	35.0 ± 3.42	28.3 ± 0.04	n.d.°	28.0 ± 0.00	114.8 ± 10.20	28.4 ± 0.02
2	0.50	n.d.º	27.8 ± 0.01	17.0 ± 3.64	27.8 ± 0.06	212.0 ± 6.19	28.1 ± 0.09
3	0.50	57.2 ± 0.80	28.2 ± 0.06	12.7 ± 1.12	27.8 ± 0.11	54.5 ± 7.86	28.1 ± 0.00
4	0.50	50.3 ± 7.51	27.5 ± 0.04	16.9 ± 3.11	27.5 ± 0.13	100.7 ± 4.62	27.5 ± 0.10
5	0.45	519.4 ± 37.82	27.9 ± 0.13	61.1 ± 4.89	27.7 ± 0.10	825.1 ± 44.46	28.0 ± 0.02
6	0.50	62.6 ± 14.43	28.0 ± 0.05	4.7 ± 3.86	27.8 ± 0.12	118.7 ± 32.71	28.3 ± 0.23
7	0.50	21.5 ± 3.12	27.7 ± 0.14	n.d.°	27.8 ± 0.12	34.4 ± 7.86	27.6 ± 0.08
8	0.55	143.2 ± 39.94	27.9 ± 0.19	28.9 ± 0.44	28.0 ± 0.11	156.8 ± 7.55	28.4 ± 0.02
9	0.50	54.9 ± 2.70	28.3 ± 0.11	29.1 ± 10.71	28.6 ± 0.07	112.4 ± 24.15	28.6 ± 0.23
10	0.50	70.7 ± 3.58	28.4 ± 0.11	35.7 ± 1.55	27.9 ± 0.33	327.3 ± 16.58	28.7 ± 0.11
Degraded DNA ^b	5.0 x 10 ⁻⁸	232.4 ± 73.41	27.5 ± 0.14	91.0 ± 20.27	27.6 ± 0.05	236.8 ± 77.32	27.7 ± 0.15

^a Threshold cycles for log phase amplification of IPC, ^b Artificially degraded genomic DNA substituted for bone powder, ^c not determined

Conclusion

The silica-based column was much more efficient at recovering and concentrating intact and degraded genomic DNA. Especially, the QIAamp[®] Mini spin column combined with buffer PB/PE from the QIAquick[®] PCR Purification kit showed the highest recovery of degraded DNA.

• IPC assay by RT-PCR using various concentrations of inhibitors showed that almost all methods had good inhibitor removal, but ultrafiltration using the Centricon[®] YM-30 yielded undetermined C₇ values at high inhibitor concentrations. At the concentration of 30.0 μg of humic acid in 2 ml, both Centricon[®] YM-100 and the QIAamp[®] DNA Mini kit showed they could not sufficiently remove inhibitors. The method using QIAamp[®] Mini spin column combined with buffer PB/PE from the QIAquick[®] PCR Purification kit was most efficient both at recovering DNA and at removing inhibitors.

When comparing the DNA extraction methods (A,B and C) for old skeletal remains, method C consisting of complete demineralization followed by a combined DNA extraction procedure using QIAamp[®] Maxi spin columns and buffer PB/PE from the QIAquick[®] PCR Purification kit showed the best performance.