

Genetic characteristics of 22 Y-STRs in Koreans: Atypical alleles, deletions in the DYS385 flanking regions, and null alleles associated with *AZFc* microdeletions

Myung Jin Park¹· Hwan Young Lee¹· Na Young Kim¹· Soong Deok Lee² · Woo Ick Yang¹ · Sang-Ho Cho^{1,3} · Kyoung-Jin Shin^{1,3}

¹Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Korea, ²Department of Forensic Medicine, Seoul National University College of Medicine, Seoul, Korea, ³Human Identification Research Center, Yonsei University, Seoul, Korea

Introduction

To construct a Korean Y-chromosomal STR database for 22 Y-STRs (DYS19, DYS385, DYS389I, DYS389I, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS439, DYS446, DYS447, DYS448, DYS449, DYS456, DYS458, DYS464, DYS635 and GATA H4.1), 708 Korean males were analyzed using three in-house PCR sets. During analysis, we could find non-standard alleles at several Y-STR loci. Moreover, discordant allele designations at DYS385 according to primer binding sites and a null type at DYS448 were shown. Here, we present characteristics of atypical alleles, the molecular basis for these allele designation discrepancies and null allele.

Materials and Methods

DNA samples

Blood or buccal samples from 708 unrelated Korean males, including 355 males already typed for 22 Y-STRs (Lee et al., FSI 2007;121:128-35) and 301 males typed for 19 Y-STRs (Park et al., FSI 2005;152:133-47), were analyzed. Genomic DNA was extracted using a QIAamp DNA Mini Kit (Qiagen, Hilden, Germany).

Schematic of 3 multiplex PCRs for 22 Y-STRs

100 bp 150 bp 200 bp 250 bp 300 bp

DYS385 is included in all the three multiplexes to detect sample switching, but the multiplex III contains smaller amplicon than the multiplex I/II.

Multiplex PCR assay to characterize the null allele at DYS448

Five AZFc-specific sequence tagged site (STS) markers, sY1161, sY1191, sY1201, sY1206 and sY1291, and a control gene pair ZFX/ZFY were amplified to detect rearrangements at the azoospermia factor c (AZFc) region. Primers for the five markers and the ZFX/ZFY gene were the same as used by Lin et al. (Mol Hum Reprod 2006;12;347-51).

Results

Atypical alleles in DYS447, DYS449, DYS458 and DYS464

Locus	Allele	Sequence structure	N
DYS447	18	(TAATA)7TAAAA1(TAATA)10TAAAA(TAATA)n	2
	19	(TAATA)7TAAAA1(TAATA)11TAAAA(TAATA)n	4
DYS449	26 (25)*	(TTTC) ₁₂ -tctc-N10-N32-cttc-(TTTC) ₁₄	
	30 (30.1)*	(TTTC) ₁₆ -tctc-N10-N32-ctttc-(TTTC) ₁₄	
	33 (42)*	(TTTC) ₁₅ -tctc-N10-[N32-cttc] ₂ -(TTTC) ₁₈	
	27.2	(TTTC) ₃ TC(TTTC) ₁₀ -tctc-N10-N32-cttc-(TTTC) ₁₄	1
	28.2	(TTTC)3TT(TTTC)11-tctc-N10-N32-cttc-(TTTC)14	1
	29.2	(TTTC) ₃ TC(TTTC) ₁₀ -tctc-N10-N32-cttc-(TTTC) ₁₄	1
	30.2	(TTTC) ₁₆ -tctc-N10-N32-cttc- (TTTC) ₁₀ TT(TTTC) ₄	12
DYS458	14.1	(GAAA) ₁₄ G	
	17.2	(GAAA)₁₅ <mark>AA</mark> (GAAA)₂	1
DYS464	12.3	(CCTT) ₇ CTT(CCTT)₅	1
	14.3	(CCTT) ₃ CTT(CCTT) ₁₁	5
* Ostensih	le alleles at D	VS449 are indicated in brackets	

Duplicated alleles at DYS19, DYS390 and DYS447							
Locus		Allele	sequence structure				
DYS19	GCS	16,17	(TAGA) ₃ tagg(TAGA) _{13,14}				
DYS390		22,23	(TCTG)8(TCTA)9,10(TCTG)1(TCTA)4				
DYS447		23,24	(TAATA)7TAAAA <mark>(TAATA)7,8</mark> TAAAA(TAATA)7				

Frequencies of null allele at DYS448 in various ethnic groups

Korean	6 in 708	0.85 %	Present study
Japanese	10 in 1079	0.93 %	Mizuno et al. FSI In press
Nepalese	3 in 769	0.39 %	Parkin et al. FSI 2006
Malays, Chinese and Indian in Malaysia	3 in 980	0.31 %	Chang et al. FSI 2006
Kalmyk	7 in 99	7.07 %	Roewer et al. FSI In press
Mexican	1 in 326	0.31 %	Gutiérrez-Alarcón et al. Leg Med 2007
Spanish	1 in 247	0.41 %	Sánchez et al. FSI In press
Asian	2 in 330	0.61 %	AmpFISTR [®] Yfiler™ database
African American	2 in 985	0.20 %	AmpFISTR [®] Yfiler™ database
Caucasian (USA)	2 in 1276	0.16 %	AmpFISTR [®] Yfiler™ database

giving careful consideration to the use of DYS448 for commercial genotyping and further database construction in Asians.

Conclusion

 18 microvariant alleles at DYS449, 6 intermediate alleles at DYS464, 2 intermediate alleles at DYS458, and 1 duplicated allele at DYS19, DYS390 and DYS447 have been discovered and characterized.

At DYS385, two deletion mutations were observed in the upstream flanking region of the core repeat units. Therefore, selection of primer pairs for criminal investigations or for storing DNA profiles in national DNA database should be carried out with more consideration of the purpose of analysis and the possible presence of mutations in flanking sequences.

Deletions of DYS448 and DYS464 were observed in association with AZFc rearrangement.
A DYS448 null allele was more frequent in Asians than any other population.

 These findings will provide useful information in forensic practice for improved interpretation of Y-STR data and database construction.