Bisulfite-converted DNA Quantity Evaluation

A multiplex quantitative real-time PCR system for the evaluation of bisulfite conversion

Sae Rom Hong Department of Forensic Medicine BK21 Project for Medical Science

BisQuE

- 01 Background
- 02 Objectives
- 03 Real-Time PCR
- 04 Sample
- 05 Result
- 06 Conclusion

02 Objectives

What we want for the single assay to assess BS-DNA

- 1 Sensitivity and reliability
- 2 Degradation level
- 3 Conversion efficiency
- 4 Recovery
- 5 Presence of inhibitor

02 Objectives: Idea from quantifiler TRIO kit

Target	Amplicon length	Ploidy	Copy Number	Dye/Quencher
Human Target, small autosomal	80 bases	Diploid	multicopy	VIC [™] dye with MGB quencher
Human Target, large autosomal	214 bases	Diploid	multicopy	ABY [™] dye with QSY [™] quencher
Human Male Target [†]	75 bases	Haploid	multicopy	FAM™ dye with MGB quencher
Internal PCR Control	130 bases	NA	Synthetic IPC template is included in the	JUN [™] dye with QSY [™] quencher

Small autosomal target DNA conc. (ng/µL)
Large autosomal target DNA conc. (ng/µL)

- 1 Sensitivity and reliability
 - ✓ Multicopy (Sudmant et al. (2010) Science)
- 2 Degradation level
 - \checkmark Ratio between the short- and long-sized amplicon

02 Objectives	
What we want	What we need
1 Sensitivity and reliability	Multicopy target
2 Degradation level	2 Short- and long-sized amplicon
3 Conversion efficiency	3 Detecting C and T
4 Recovery	4 Cytosine free primer
5 Presence of inhibitor	5 Internal Positive Control

Premium Bisulfite Kit (Qiagen): P-ME ✓ EpiTect Fast Bisulfite kit (Qiagen): Q-EF ✓ NEBNext® Enzymatic Methyl-seq Conversion Module (NEB): N-NE

05 Result: BisQuE **C-T indicator** Ct value Sample Long-Short-C Short-T (T -> C) Cfree y = 0.9719x - 0.4951gDNA 22.426 23.738 $R^2 = 0.9962$ BS-DNA 28.784 25.537 -> **24.324** 26.175 Amount (ng) Sample Long-Short-C Short-T (T -> C) Cfree Short-T Ct gDNA 4.421 4.731 **BS-DNA** 0.044 1.103 0.762

05 Result: BisQuE

Features

2 Degradation level

 $\frac{BS - DNA(short/long)}{gDNA(short/long)}$

- ✓ Multicopy
- ✓ Compensating variance

	Amount (ng)					
Sample	Short-C	Short-T (T -> C)	Long- Cfree			
gDNA	4.421		4.731			
BS-DNA	0.044	1.103	0.762			

$$\frac{(0.044 + 1.103)/0.762}{4.421/4.731} = 1.610$$

05 Result: BisQuE

Features

Recovery

$$\frac{2 \times BS - DNA}{gDNA} \times 100 \; (\%)$$

- ✓ gDNA: sense and antisense strand
- ✓ BS-DNA: sense strand
- ✓ Short amplicon
- ✓ ×2 for N-NE (20ul elution)

	Amount (ng)					
Sample	Short-C	Short-T (T -> C)	Long- Cfree			
gDNA	4.421		4.731			
BS-DNA	0.044	1.103	0.762			

$$\frac{2 \times (0.044 + 1.103)}{4.421} \times 100 \,(\%) = 51.86 \,(\%)$$

5 Result:	Kit perfo	ormance					
Kit	Z-EZ	D-PB	P-ME	T-EJ	Q-EF	N-NE	
Conversion Efficiency (%)	99.90	99.74	99.78	99.61	99.89	94.24	
Degradation Level	1.495	1.762	1.577	1.479	1.279	0.857	
Recovery (%)	50.58	43.79	44.42	48.39	39.65	18.24	
Conversion 100	on Efficiency (%)	2.5 2.5 2.5 2.5	Degradation Level	■ Z-EZ	qPCR Re		■ Z
85		D-PB 1.5 P-ME 1.5 T-EJ 1 Q-EF N-NE 0.5		■ P-ME ■ T-EJ ■ Q-EF ■ N-NE	60 50 40 30 20	8 8	■ D- ■ p- ■ T- ■ Q ■ N
75		0.3			10 0	1	

Kit	Z-EZ	D-PB	P-ME	T-EJ	Q-EF	N-NE
Conversion Efficiency (%)	99.90	99.74	99.78	99.61	99.89	94.24
Degradation Level	1.495	1.762	1.577	1.479	1.279	0.857
Recovery (%)	50.58	43.79	44.42	48.39	39.65	18.24
Average IPC Ct	27.420	27.513	27.445	27.382	27.514	27.676
*gDNA Average IPC Ct: 27.458						

06 Conclusion

- Development of BisQuE system for both gDNA and BS-converted DNA
 - ✓ Short-C, Short-T, and Long-Cfree
 - ✓ Conversion efficiency + Degradation level + Recovery
- Most kits showed more than 99% of conversion efficiency, except N-NE.
- Recovery rates of kits were similar, Z-EZ showed the highest, except N-NE.
- N-NE showed the lowest degradation level due to its' chemistry. It is recommended when samples are severely degraded.
- There is no significant inhibition in BS-DNA.
- BS-DNA input should be considered before the DNAm analysis to guarantee the accuracy of downstream analysis.

07 Acknowledgement

• This research was supported by the National Research Foundation of Korea (NRF) funded by the Korean government (NRF- 2019R1F1A106382712).

• Brain Korea 21 Project for Medical Science

