

	40	_																							
> N		-																							
/ II	/1 12	ς.	d	ata	an	alve	ic r	h h	air	cł	าว	ft	c		ir	σ	Co	nvo	rao	SO	ftva	aro			
	/11	5	u	ata	an	arys	13 0	/	an	31	ia	I L	3	uj		ъ	CU	iive	IBC	30		are			
Conv	orσ	۵ م	oft	ward	n roc	ul+1																			
20110	CIE	C 3		ware	- 103	suitj																			
Sample	5001_H	IonXp	ress_08	5																					
e haplogrou	ip Y1																								
Regions	1-16569	9			-															(a.s.)					-
Position	Ref	Sample	Variant	Var Freq	Туре	ead Coverage	ead Coverage	liele Coverag	lele Covera	ne Cover	G%	A%	T%	C%	N%	ins%	del%	Polymorphism	ontrol Region	State	Frequency	Artefact	/ar Strand Biaead	Strand Bi	EMPO
1/5	A	C	G	99.8	SIVP	1005	2800	2210	1050	2859	99.8	0.2	01	02.6	0	0.1	12	1460	1460	confirmed	99.8	True variant	0.5	0.0	unche
152	T	т	v	34.6	SNP	1883	1393	1132	649	483	0	0	65.4	34.6	0	1.2	1.5	152V	140C	nossible	34.6	Point Heteroplasmy	0.5	0.6	uncher
263	Δ.	G	G	99.9	SNP	433	438	870	432	438	99.9	0	0.4	0	0	0.6	01	263G	263G	confirmed	99.9	True variant	0.5	0.5	unche
309	T	+	C	42.5	INS	365	798	494	171	323	0	0	0	0	0	54.9	0	309.10	309.10	likely	42.5	Length Heteroplasmy	0.5	0.7	confir
315	G	+	С	75.6	INS	357	802	876	225	651	0	0	0	0	0	85.7	0	315.1C	315.1C	likely	75.6	True variant	0.6	0.7	confi
709	G	A	A	98.6	SNP	3087	2871	5874	3040	2834	1.3	98.6	0	0	0	1.4	0.1	709A		confirmed	98.6	True variant	0.5	0.5	unche
750	A	G	G	99.4	SNP	791	1842	2618	789	1829	99.4	0	0	0	0	0.7	0.5	750G		confirmed	99.4	True variant	0.5	0.7	unche
1438	A	G	G	99.5	SNP	1186	709	1885	1185	700	99.5	0.5	0	0	0	0.4	0	1438G		confirmed	99.5	True variant	0.5	0.6	unche
2706	A	G	G	98.6	SNP	1644	1486	3086	1617	1469	98.6	1.4	0	0	0	0.6	0	2706G		confirmed	98.6	True variant	0.5	0.5	unche
3834	G	Α	Α	100	SNP	303	696	999	303	696	0	100	0	0	0	0	0	3834A		confirmed	100	True variant	0.5	0.7	unche
4562	Α	G	G	97.3	SNP	1771	1386	3071	1710	1361	97.3	2.2	0	0	0	0.3	0.5	4562G		confirmed	97.3	True variant	0.5	0.6	unexp
4769	Α	G	G	99	SNP	1013	1136	2127	1011	1116	99	0	0	0	0	0.5	1	4769G		confirmed	99	True variant	0.5	0.5	unche
5417	G	A	A	99.8	SNP	176	441	616	175	441	0.2	99.8	0	0	0	1.3	0	5417A		confirmed	99.8	True variant	0.5	0.7	unche
7028	С	T	Т	97.9	SNP	2217	1001	3149	2170	979	0	0	97.9	2.1	0	0.1	0	7028T		confirmed	97.9	True variant	0.5	0.7	unche
7325	A	G	G	99.6	SNP	1764	1952	3701	1762	1939	99.6	0.1	0	0	0	0.2	0.3	7325G		confirmed	99.6	True variant	0.5	0.5	unexp
8392	G	A	A	99.1	SNP	167	388	550	164	386	0.9	99.1	0	0	0	0.2	0	8392A		confirmed	99.1	True variant	0.5	0.7	unche
8555	T	T	Y	25.1	SNP	791	552	337	208	129	0	0	74.9	25.1	0	0.3	0	8555Y		unclear	25.1	Point Heteroplasmy	0.5	0.6	unexp
8860	A	G	G	99.9	SNP	429	848	1276	428	848	99.9	0.1	0	0	0	0.2	0	8860G		confirmed	99.9	True variant	0.5	0.7	unche
103/9	A	G	G	97	SINP	955	152/	2406	909	149/	97	2.9	0	0	0	0.3	0.1	103/9G		contirmed	97	True variant	0.5	0.6	unche
10596	A	0	0	99	CAID	2040	1/40	2790	2010	1012	99	00.1	0	0	0	0.2	0	117104		confirmed	99	True variant	0.5	0.0	unche
12705	C	T	т	09.1	CNID	1095	564	2500	1047	552	0.5	0	09.1	10	0	0.0	0	12705T		confirmed	09.1	True variant	0.5	0.9	uncha
12/00				50.1		1000	001	2000	2011	000			50.2	1.0		0.2		127001		commed		inde fundite		0.0	unene

• Oresponse of tware result: Image: converge software result: Image: converge software result: Image: converge software result: Image: converge so	
Converge software result New	
Or any of the second of the s	
Converge software result visual Horizontal State visual Horizontal Horizontal State visual Horizontal Horizont	
Image: 1 1<	
Indicate	
73 A 6 6 948 5NP 5H8 2H5 6465 360 259 92 0 0 0 0 0 0 0 736 736 Confirmed 988 True variant 0.5 146 T C 0 0 13 146 146 146 146 146 146 146 146 146 146 146 147 157 <	trand Bi EMPOP
146 T C C 9.6 9.9 9.18 9.13 9.13 9.13 130	
112 1 1 1 7 34.9 34.97 1332 1332 648 648 69 65 14.9 0 12.7 12.7 12.7 12.7 12.7 possible 34.6 Port Heteroplarmy 0.5 309 T 4 6 6 9.9 54.9 34.8 48.8 0.9 0.8 0.8 0.8 0.9 0.0 0.8 0.0 <td></td>	
Lib A G <thg< th=""> <thg< th=""> <thg< th=""></thg<></thg<></thg<>	
315 G 4 C 7.56 105 577 620 677 621 0 0 0 0 0 107 0 11511 1151 1151 1151 <td></td>	
10 6 A 8 98 980 281 581 581 690 281 1 980 2 1 980 2 2 2 2 1 970 1 980 2 2 2 2 0 0 1 0 1 970 Confirmed 980 The variant 0 750 A 6 6 994 589 181 180 201 220 94 0 <th< th=""><td></td></th<>	
750 A G	
1438 A 6 6 995 5M ⁹ 110 70 ⁹ 100 10 0 </th <td></td>	
100 1	
452 A G G 9.73 5NP 1711 1366 9710 1710 136 9710 1210 131 9710 1210 131 9710 1310 1210 1310 9710 1310 1310 1210 1310 1310 1310 1210 1310	
A G G G G G SN D13 D13 D12 D11 D16 P1 D1 D16 P1 D1 D16 P1 D11 D16 P1 D11 D15 P1 D11 D1	0.6 unexpect
5417 G A 9.8 9.9 1.76 4.14 6.16 1.75 4.11 0.1 4.11 0.1 9.1 0 1.3 0 5.17A confirmed 9.8 True variant 0.5 7028 C T T 9.9 1.0 0 1.3 0 5.17A confirmed 9.9 True variant 0.5 7028 C T 9.9 9.0 2.1 0 1.0 7028 confirmed 9.9 True variant 0.5 7825 A G G 9.9 1.0 1.0 9.0 0.1 0.0 0.1 0.0 7028 confirmed 9.9 True variant 0.5 8802 G A 9.1 1.07 1.03 1.02 9.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
7028 C T T 97.9 SNP 2101 3149 2170 979 0 979 2 1 0 1 0 7028T confirmed 979 True variant 0.5 7325 A G G 99.9 SNP 1.16 199 99.9 0.1 0	
7125 A G G 98 510 176 1952 3701 1762 1939 986 0.1 0	
BM2 G A A 991 SNP Lof SBB SOD LBB SOD PM L0 Control SOD D1 SOD D2 D D2 D D2 D D2 D D2 D D2 D D2 D2 <thd2< th=""> <t< th=""><td></td></t<></thd2<>	
A G G 9.9 SNP 429 648 1276 428 848 999 0.1 0 0 0.2 0 8860 0 0.2	
10379 A G G 97 SNP 953 1527 2406 909 1497 97 2.9 0 0 0 0.3 0.1 10379G confirmed 97 True variant 0.5	
10398 A G G 99 SNP 1073 1746 2790 1061 1729 99 1 0 0 0 0 0 10398G confirmed 99 True variant 0.5	
11719 G A A 991 SNP 3040 1028 4032 3019 1013 0.9 991 0 0 0 0 0 0 11719A confirmed 99.1 True variant 0.5	
12705 C T T 98.1 SNP 1985 564 2500 1947 553 0 0 98.1 19 0 0.2 0 12705T confirmed 98.1 True variant 0.5	

3. F	le	sι	ılt	S																				
	<i>.</i> .)C	م ام			-:-	- f L		۰ŀ		6 .			:	~	<u></u>				61				
► IV	11	3	ū	lld d	nary	SIS		lali	SI	ld	π	5 1	us		Ig	CO	nve	rge	50	Γιν	are			
			<i>c</i> .																					
Conve	erg	e s	oft	ware	result]																			
Sample			ess_0	Var Freq																				
ose haplogroup	¥1			99.8																				
Regions	1-1650 Ref		Varian	98.6	and Coveran	ncoad Coverai	Inte Covera		and Could	6%	0.94	194	C%	MRC	Inch	dal%	behmornhien	ontrol Regio	State	Frenuency	Artefart	for Strand R		PI FMDOD
73	A	G	G	34.6	P 3616	2865	6466	3607	2859	99.8	0.2	0	0	0	0.1	0			confirmed	99.8	True variant	0.5		unchecke
146	T		С	99.9	P 1885	1378	3218	1858	1360	0	0			0	0.6	1.3	146C	146C			True variant			
	Т	T	Y	42.5	P 1883			649	483			65.4	34.6						possible		Point Heteroplasmy			
263	Α		G	75.6	P 433	438	870	432	438						0.6		263G	263G			True variant			
309	T	+	С	08.6	365	798	494			0	0		0	0	54.9	0				42.5	Length Heteroplasmy			
	G	+	С	90.0	357	802	876		651	0		0	0	0	85.7	0					True variant			
709	G	A	A	99.4	P 3087	2871	5874	3040	2834	1.3					1.4		709A				True variant			
	A		G	99.5	P 791	/aria		eque	enc	99.4	0		0	0										
	A		G	98.6	P 1185						0.5				0.4									
2700	A	G	G	100	202						1.9			0		0								
4562	4	G	G	97.3	0 1771												45626							
4769	A		G	99	P 1013	1136											4769G							
	G	A	A	99.8	p 176	441		175	441	0.2		0	0	0	1.3	0	5417A							
		т	т	97.9	P 2217		3149		979															
	A	G	G	00.6	P 1764			1762	1939					0							True variant			unexpect
8392	G	А	Α	00.1	P 167	388		164	386	0.9			0	0		0	8392A				True variant			
	T	Т	Y.	99.1	P 791			208	129		0	74.9	25.1	0		0	8555Y		unclear		Point Heteroplasmy			unexpect
	A		G	25.1	P 429	848	1276	428	848												True variant			
10379	Α		G	99.9	P 953		2406	909	1497		2.9						10379G				True variant			
10398	Α		G	97	P 1073	1746	2790	1061	1729	99			0	0	0	0					True variant			
11719	G	A	A	99	P 3040	1028	4032	3019		0.9			0	0		0	11719A				True variant			
		Т	Т	99.1	P 1985	564		1947					1.9			0			confirmed	98.1	True variant	0.5	0.8	unchecke
				98.1																				
	YO	NSE	I UI	VIVERSI	ΤY																			
S	CO	LLE	GE (OF MED	ICINE																			
4.0																								

3.	Re	S	uli	ts																					
> r	٧F	s	d	ata	an	alys	is (of ł	nair	sł	າລ	ft	S I	us	in	ig	Со	nve	rge	so	ftw	are			
[Conv	verg	ze	sof	twar	e res	sult]																			
Sample	5001_	HIonX	(press_0)																						
lose haplogro																									
Regions		ð9																							
Position 72	Ref	Samp	leVarian	t Var Freq	Type	ead Coverageea	ad Coverag	gellele Cover	aglele Covera	zie Cover	G%	A%	T%	C%	N%	ins%	del%	Polymorphism 72G	Control Regio	state	Frequency	Artefact	/ar Strand	Blaead Strand	Bi EMPOP
146	T	C	C	99.6	SNP	1885	1378	3218	1858	1360	99.0	0.2	01	98.6	0	0.1	13	1460	1460	confirmed	99.0	True variant	0.5	0.6	unchecked
152 T	1	T	Y	34.6	SNP	1883	1	393	1132	649		483	0	0	65	.4 34	.6 0	1.2	0	152Y	152Y	possible	34.6	Point Her	eroplasmy
309	Т	T,	c	42.5	INS	365	798	494	171	323	0	0	0	0	0	54.9	0	309.1C	309.1C	likely	42.5	Length Heteroplasm	v 0.5	Â	confirmed
315	G	+		75.6			802	876	225	651	0	0	0	0	0		0					True variant		0.7	confirmed
709	G	A	A	98.6				5874	3040	2834		98.6				1.4		709A				True variant		0.5	unchecked
750	A			99.4		791	1842	2618	789													True variant		0.7	unchecked
1438	A			99.5		1186	709					0.5		0	0	0.4	0	1438G				Point h	otor	onla	unchecked
2706	A	G	G			1644						1.4					0					Function	eter	Opias	Hinty cked
3839	0	A	A							1261								3834A							
4302				97.5			1136											43020							
5417	G	A	A			176	441			441					0		0	5417A							
7028	c	T	T	97.9		2217	1001		2170	979	0	0		21	0	0.1	0								unchecked
7325	A			99.6		1764																			unexpected
8392	G	A	A	99.1		167			164	386	0.9	99.1		0	0		0	8392A				True variant			unchecked
8555	Т	Т	γ	25.1					208	129	0	0	74.9	25.1	0		0	8555Y		unclear		Point Heteroplasmy			unexpected
8860	A			99.9		429	848	1276	428	848					0		0	8860G				True variant			
10379	A			97		953		2406	909	1497		2.9						10379G				True variant			
10398	A			99			1746	2790	1061		99			0			0					True variant			
11719	G	A	A	99.1		3040	1028	4032	3019		0.9	99.1		0	0		0	11719A				True variant			
12705		Т	Т	98.1			564		1947		0	0		1.9	0		0					True variant			
®	YO CO	NS	EI U Ege	NIVER OF MI	USITY EDICI	NE																			

L

3. Results							
MPS data analysis of ha ^{2,150 bp} [IGV image]	air shaft	s us	ing <mark>Co</mark> r	nverge	softv	wai	re
	[Converge	2.1 re	esult]				
I	Position	Ref	Sample	Variant	Туре		Polymorphism
Ī	2156	Т	+	А	INS		2156.1A
	→ Autom (ISFG gi	aticall <i>iidelin</i>	y calling ad	ccording to	forens	ic nc	omenclature
Ŧ	[GATK Mut	ect2	result]				
1 I I I I I I I I I I I I I I I I I I I	#Chron	า	Positi	on	Ref		Alt
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	chrM		2150)	т		TA
Ŧ							
G T A A A A A A T np 2150 np 2156							

Sample ID	rCRS Position	rCRS Nucleotide	Hair shaft#1	Hair shaft#2	Blo
	152	т	С	T/ _{C(34.6)}	T/c(2
	3834	G	A/ _{G(5.4)}	A	A
Sample 001	8555	т	Т	T/ _{C(25.1)}	Т
Sample 001	15364	С	C/ _{T(10.4)}	C	C
	16266	С	T/ _{C(5.6)}	Т	Т
	16319	G	A/ _{G(8.3)}	A/ _{G(7.8)}	A
Comula 004	709	G	A/ _{G(41.8)}	G	G
Sample 004	16320	С	C/ _{T(10.1)}	С	C/ _{T(2}
Comple 000	41	С	C/ _{T(20.7)}	С	C
Sample 006	11847	G	G/ _{A(13.6)}	G	G
Sample 007	16150	С	T	Т	Т
Comula 000	15373	А	A	A/ _{G(32.2)}	A
Sample 008	16362	т	С	C/ _{T(7.7)}	С
C	8517	G	G	G	G/c(
Sample 009	16187	С	т	T/c(7.5)	Т
C	11969	G	A/ _{G(5.7)}	A	A
Sample 012	16192	C	T/c(7.0)	т	т
Sample 013	16311	Т	C	C/ _{T(45.2)}	C
	8473	Т	C/ _{T(19,2)}	C/ _{T(14.3)}	C
Sample 014	16262	т	C/	C/	C

Sample ID	rCRS Position	rCRS Nucleotide	Hair shaft#1	Hair shaft#2	Blood	
	152	Т	С	T/c(34.6)	T/c(22.0)	
	3834	G	A/ _{G(5.4)}	A	А	
Camala 001	8555	Т	Т	T/ _{C(25.1)}	Т	
Sample 001	15364	С	C/ _{T(10.4)}	C	С	
	16266	С	T/c(5.6)	Т	т	
	16319	G	A/ _{G(8.3)}	A/ _{G(7.8)}	A	
Control of OOA	709	G	A/ _{G(41.8)}	G	G	
Sample 004	16320	С	C/ _{T(10.1)}	С	C/ _{T(24.9)}	
	41	C	C/T(20.7)	ſ	C	

Buccal swab

•	Position	Nucleotide				
	152	Т	С	T/c(34.6)	T/c(22.0)	C/ _{T(33.4)}
	3834	G	A/ _{G(5.4)}	А	А	А
Com. al. a 001	8555	Т	Т	T/ _{C(25.1)}	Т	Т
Sample 001	15364	С	C/ _{T(10.4)}	C	С	С
	16266	С	T/c(5.6)	Т	Т	т
	16319	G	A/ _{G(8.3)}	A/ _{G(7.8)}	А	А
C	709	G	A/ _{G(41.8)}	G	G	G
Sample 004	16320	С	C/ _{T(10.1)}	С	C/ _{T(24.9)}	C/ _{T(16.8)}
Control of OOC	41	С	C/ _{T(20.7)}	С	С	С
Sample 006	11847	G	G/ _{A(13.6)}	G	G	G
Sample 007	16150	С	Т	Т	Т	T/ _{C(5.8)}
Sample 009	15373	А	А	A/ _{G(32.2)}	A	A
Sample 008	16362	Т	с	C/ _{T(7.7)}	С	С
Comula 000	8517	G	G	G	G/c(6.4)	G
Sample 009	16187	С	Т	T/ _{C(7.5)}	Т	Т
Comple 012	11969	G	A/ _{G(5.7)}	А	А	A
Sample 012	16192	С	T/ _{C(7.0)}	Т	Т	Т
Sample 013	16311	Т	С	C/ _{T(45.2)}	С	С
Sample 014	8473	Т	C/ _{T(19.2)}	C/ _{T(14.3)}	С	С
Sample 014	16362	Т	C/ _{T(6.4)}	C/ _{T(5.8)}	С	С
	204	Т	Т	Т	T/c(13.6)	T/ _{C(49.0)}
	499	G	A/ _{G(7.6)}	А	А	А
Comula 015	2831	G	A/ _{G(5.7)}	А	А	А
Sample 015	4820	G	A/ _{G(12.3)}	A/ _{G(8.0)}	А	А
	15034	А	G/ _{A(5.9)}	A/ _{G(29.9)}	A/ _{G(15.6)}	A/ _{G(9.9)}
	15236	A	G/ _{A(5.7)}	G	G	G
Sample 016	14016	G	A/ _{G(11.4)}	A/ _{G(10.3)}	A	A
	930	G	A/ _{G(23.0)}	A/ _{G(30.9)}	A/ _{G(28.3)}	A/ _{G(23.0)}
Sample 017	15279	Т	Т	T/ _{C(33.1)}	Т	Т
	16103	A	А	A/ _{G(33.0)}	G/ _{A(19.1)}	G/ _{A(29.7)}
Sample 018	15262	Т	C/ _{T(27.1)}	C/ _{T(18.4)}	С	C
Sample 010	9947	G	G/ _{A(45.6)}	G	G	G
Sample 019	10644	G	G/ _{A(37.3)}	G	G/ _{A(18.6)}	G/ _{A(19.3)}
Sample 020	1200	G	G	G/ _{A(40.0)}	G	G
Sample 020	16162	А	A/ _{G(13.6)}	A	A	Α

3.	Results					
	Observed poin	t heteropl	asmy of w	hole mtGe	nomes	
	Sample type	Total	Hair shaft #1	Hair shaft #2	Blood	Buccal swab
	No. of PHPs	56	23	17	8	8
	Proportion range(%)	5.4~49.0	5.4~45.6	5.8~45.2	6.4~28.3	5.8~49.0
	25 sdHd Jo Japan 15 10 5 0	5.4% ~ 45.6% Hair shaft #1	5.8% ~ 45.2% Hair shaft #	6.4% ~ 28.3% 2 Blood	5.8% ~ 49.0% Buccal swab	
(95)	YONSEI UNIVERSITY College of Medicine					

Sample ID	rCRS position	rCRS nucleotide	Hair shaft #1	Hair shaft #2	Blood	Buccal swab
Sample 001	152	т	С	T / _{C(34.6)}	T/ _{C(22.0)}	C/ _{T(33.4)}
Sample 004	709	G	A/ _{G(41.8)}	G	G	G
Sample 015	15034	Α	G / _{A(5.9)}	A/ _{G(29.9)}	A/ _{G(15.6)}	A / _{G(9.9)}
Sample 017	16103	Α	Α	A/ _{G(33.0)}	G / _{A(19.1)}	G / _{A(29.7)}
Sample 017	16103	A	A	A/ _{G(33.0)}	G / _{A(19.1)}	G / _{A(29.7)}

4.	Discussi	ons		
	Inverte [Sanger s	d major nu equencing res	cleotide ac	cording to the tissue type
		MPS	esult	Sanger result
		Hair shaft #1	152C	MMMMMMMMMMMM
		Hair shaft #2	152T/ _{C(34.6)}	TBCCCCATCCVATTATTATC
		Blood	152T/ _{C(22.0)}	TBCCCCATCCTATTATTATC
		Buccal swab	152C/ _{T(33.4)}	TOCCCCATCCCATTATTATC
				np 152

International Journal of Legal Medicine https://doi.org/10.1007/s00414-019-02205-y		
ORIGINAL ARTICLE Comparison of whole mitochondrial ge between hair shafts and reference sam sequencing	enor ples	ne variants s using massively parallel
Bo Min Kim ^{1,2} • Sae Rom Hong ^{1,2} • Hein Chun ^{2,3} • Sangwo Received: 4 September 2019 / Accepted: 7 November 2019	oo <mark>Ki</mark> m	²³ • Kyoung-Jin Shin ^{1,2} Int J Legal Med. in press
Bo Min Kim ^{1,2} • Sae Rom Hong ^{1,2} • Hein Chun ^{2,3} • Sangwo Received: 4 September 2019 / Accepted: 7 November 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019	oo Kim	²³ • Kyoung-Jin Shin ^{1,2} Int J Legal Med. in press Int J Legal Med
Bo Min Kim ^{1,2} • Sae Rom Hong ^{1,2} • Hein Chun ^{2,3} • Sangwo Received: 4 September 2019 / Accepted: 7 November 2019 [☉] Springer-Verlag GmbH Germany, part of Springer Nature 2019 donor. Accumulation of mtGenome PHP data will facilitate the application of MPS in the comparative analysis of mtGenome variants containing PHP to forensic casework.	9.	^{2.3} • Kyoung-Jin Shin ^{1,2} Int J Legal Med. in press Int J Legal Med King JL, LaRue BL, Novroski NM, Stoljarova M, Seo SB, Zeng X, Warshauer DH, Davis CP, Parson W, Sajantila A, Budowle B (2014) High-quality and high-throughput massively parallel se- quencing of the human mitochondrial genome using the Illumina MiSea. Forensic Sci Int Genet 12:128–135

Acknowledgement

YONSEI UNIVERSITY COLLEGE OF MEDICINE

- Yonsei DNA Profiling Group
- Yonsei TGIL (Translational Genome Informatics Laboratory)

BrainKorea21^{PLUS}

Ministry of Science and ICT, Republic of Korea (Funding No.: NRF-2014M3A9E1069989)

Brain Korea 21 PLUS Project for Medical Science, Yonsei University

