

Introduction

- The highly degraded and low copy number (LCN) features of the DNA extracted from old skeletal remains still makes short tandem repeat (STR) genotyping challenging.
- Next generation sequencing (NGS) of STRs, which simultaneously could amplify STRs with small sized amplicons, has been suggested to be promising for the analysis of degraded DNA.
- Optimized NGS panel and protocol for the STR genotyping of degraded DNA are not available.

sei University College of Medici

· 1		onaitio	n for	Y-STR	analysis				
1 st	PCR Ampl	ification			2 nd	PCR Ampli	fication		
PCR mixture	Volume	Thermal	l Cvclina		PCR mixture	Volume	Therm	al Cycling	
dH ₂ O	3.0 µl	95℃	11 min		dH ₂ O	3.5 µl	95℃	15 min	
10 X Gold ST*R Buffer	2.0 µl	94°C	20 sec		10 X Gold ST*R Buffer	2.0 µl	94℃	20 sec	
5 X Primer Miv¥	12 O ul	60°C	60 sec	X 30 cycles	Index 1 (i7)	2.0 µl	61℃	30 sec	X 13 cycle
	12.0 µ	72°C	45 sec	0,000	Index 2 (i5)	2.0 µl	72℃	45 sec	
AmpliTaq Gold (<u>5U/µl</u>)	1.1 µl	72℃	5 min		AmpliTaq Gold (<u>5U/µI</u>)	0.5 µl	72℃	5 min	
Template DNA*	2.0 µl	4°C	Soak		Purified 1st PCR product	10.0 µl	4℃	Soak	
Fill up to with dH ₂ O	20.0 µl				Fill up to with dH ₂ O	20.0 µl			

Results			
Library QC usin	ng Agilent 2100 Bioanalyze	er	
Autosomal STR	Labor 1000g_30 Strap_300 1000 - - 1000 - </th <th>Y-STR</th> <th>Listor 309a_230 1500 -</th>	Y-STR	Listor 309a_230 1500 -
 Sensitivity test u Genotype recover autosomal and N 	using LCN 2800M contr ver rate for 50 pg of Y-STRs	rol DNA 2800M DNA	were > 95% on NGS of both
			Yonsei University College of Medicine 🛞

Markers	via CE	via NGS	Ga	in			
Banta D	1	10		(950/)			
Fenta D D2281045	1	10	+16	(80%)			
D2281045	2	18	+10	(60%)			
CSE1PO	6	17	+11	(55%)			
D2S1338	0	17	+0	(45%)			
D10S1248	10	19	+9	(45%)			
D13S317	10	19	+8	(40%)			
TPOX	11	19	+8	(40%)			
D5S818	10	17	+7	(35%)			
D7S820	9	15	+6	(30%)			
D198433	14			(,			
D18S51	15	A' D3S1358 D1S165	56 D2S441 D1	0S1248 013	3\$317	Penta	E
D128391	17				005400		
D2S441	18	D165539 D18551	D2ST.	338	CSF1P0	Penta	D
Amelogenin	19	TH01 VWA	D21S11	D75820	D5S818	трох	DYS391
TH01	20						
D8S1179	19	D8S1179 D12S391	D19S433		FGA	D	22S1045
D1S1656	16			1.1	1.11		
FGA	16	100	200	300	1.1	400	50
D21S11	14		200	000		400	00
D16S539	20	19	-1	(-5%)			
D3S1358	18	17	-1	(-5%)			
vWA	19	16	-3	(-15%)			

Markers	via CE	via NGS	Gain			
DYS643	2	17	+15 (75%)			
DYS19	0	13	+13 (65%)			
YGATAH4	2	15	+13 (65%)			
DYS438	3	16	+13 (65%)			
DYS392	3	15	+12 (60%)			
DYS439	5	17	+12 (60%)			
DYS437	6	18	+12 (60%)			
DYS456	9	17	+8 (40%)			
DYS390	9	15	+6 (30%)			
DYS549	9					
DYS533	10	DYS576 DYS3891	DYS448 DYS3891 I	DYS19		
DYS385	9	DVC201 DVC401		400 DVC	107	
DYS481	14	D12331 D12481	D12249 D12233 112	438 DY54	137	
DYS389II	8	DYS570 DYS	635 DYS390 DYS439	DYS392	DYS643	
DYS576	17	_				
DYS635	14	DYS393 DY	S458 DYS385 a/b	DYS456	Y-GATA-H4	
DYS448	14			1		
DYS458	14 60	100	200 300		400	
DYS393	16	100			100	_
DYS391	19	16	-3 (-15%)			
DYS570	17	14	-3 (-15%)			
DYS389I	18	10	-8 (-40%)			

Summary

- The in-house NGS panels for autosomal and Y-STRs analysis was able to generate reliable STR genotypes even if the input DNA was as low as 50 pg of the 2800M control DNA.
- NGS of STRs gained more than 5 typed markers on average than the CE methods on both autosomal and Y-STRs analysis for the 20 degraded DNAs.
- Most of gains in the number of typed makers by NGS analysis of STRs for degraded DNA were mainly achieved in the long-length target in CE methods.
- NGS of STRs with small sized amplicons facilitates to increase discrimination power in the identification of old skeletal remains by obtaining quantitatively and qualitatively reliable STR genotypes.

Yonsei University College of Medicine 🔞

