The Genetics Society of Korea ICGSK 2019

STR Analysis of Degraded DNA from Old Skeletal Remains Using Two In-House Next Generation Sequencing Panels

Su-Jin Bae, Ye-Lim Kwon, Mi Hyeon Moon, Kyoung-Jin Shin

Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, Korea
Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, Korea

Introduction

* The highly degraded and low copy number (LCN) features of the DNA extracted from old skeletal remains still makes short tandem repeat (STR) genotyping challenging.
- Next generation sequencing (NGS) of STRs, which simultaneously could amplify STRs with small sized amplicons, has been suggested to be promising for the analysis of degraded DNA.

Optimized NGS panel and protocol for the STR genotyping of degraded DNA are not available.

Target Autosomal STR and Size Range

PowerPlex ${ }^{\circledR}$ Fusion Loci and D61043 upgraded from Kim et al. FSI Genet. 30 (2017)

Y-STR Target and Size Range

PowerPlex ${ }^{\circledR}$ Y23 Loci and Y-M175 upgraded from Kwon et al. FSI Genet. 25 (2016)

http://forensic.yonsei.ac.kr/protocols.htm

Object

* Evaluation of the in-house NGS panels for Autosomal and Y chromosomal STR analysis of degraded DNA

- Establishing optimized protocol for NGS analysis of STR genotype from degraded DNA
- Comparison of STRs genotyping results between the NGS and capillary electrophoresis results

Simplified MPS library preparation

Materials and Methods						
* Two-step PCR condition for Autosomal STR analysis						
${ }^{12} \mathrm{PCCR}$ Amplifacaion			$2^{4 \times \text { Precrampmification }}$			
${ }^{\text {PCR mixtur }}$	Voume	Temal Cyling	PCR mixture	Voume	Themal	cysing
atho	${ }^{3} \mathrm{H}$	${ }_{956} 111 \mathrm{~min}$	$\mathrm{JH}_{2} \mathrm{O}$	3.5山	${ }^{\text {asc }}$	15 min
10x coods str bulter	20.1	${ }_{948} \quad 20800$	10x Cods str butuer	2.011	${ }_{\text {stc }}$	${ }^{20800} \times 12$
5XPinimencen	12.01		$1 \mathrm{mbax}($ (T)	2011 2011	${ }_{6} \mathrm{H}^{2}$	
	${ }^{1.1,4}$	$\frac{72 \mathrm{C}}{45 \mathrm{sec}}$	${ }^{\text {madex } 2(5)}$	2001		
Tempalionar	20.1	${ }_{4 C}$ Soak	Anprase	10,		${ }^{5 \mathrm{~mm}}$
	20.01		Filluplowidthe	20.011		

Materials and Methods

* DNA samples in duplicate

- A total of 20 degraded DNAs from more than 50 -years-old skeletal remains
- by using total demineralization and silica column method
- 100pg, 50pg and 33 pg of diluted 2800 M control DNAs

* Molecular characteristics of DNA samples

- Assessed by the Quantifiler ${ }^{\circledR}$ Trio DNA Quantification kit (Thermo Fisher Scientific)

* Construction of library by 2-step PCR and quality control

- Library QC using Agilent 2100 Bioanalyzer

Materials and Methods

* Library pooling and bead purification
- Normalization and pooling of each library was carried out to $10 \mathrm{ng} / \mu \mathrm{l}$ for autosomal STR and Y-STR, respectively
- Pooled libraries were purified with $\mathbf{x 1 . 1}$ Agencourt ${ }^{\circledR}$ AMPure ${ }^{\circledR}$ XP beads
* Library quantification and NGS run
- Library quantification using KAPA library quantification kit
- NGS on Illumina MiSeq system
- Illumina MiSeq Reagent Kit v3 (2 x 300 cycles)

Materials and Methods

* Capillary electrophoresis-based STR genotyping
- The PowerPlex ${ }^{\circledR}$ Fusion System for autosomal STR genotyping
- The PowerPlex ${ }^{\circledR}$ Y-23 System for Y-STR genotyping
- LCN 2800M control DNA and 2μ of degraded DNA from old skeletal remains
- Analyzed with an AB 3130 Genetic Analyzer and GeneMapper ${ }^{\mathbb{R}}$ ID v3.2 software
* Genotype analysis
- All samples has been analyzed on the NGS and CE systems respectively in duplicate
- Repeatedly identified genotype was determined as a final genotype for each markers

Results

* Molecular characteristics for 20 degraded remain DNA

- The mean concentration of 20 old skeletal remain DNA was $57 \mathrm{pg} / \mu \mathrm{l}$
- The degradation index value ranged from 1.3 to 21.5

Results

\nsim Library QC using Agilent 2100 Bioanalyzer

Sensitivity test using LCN 2800M control DNA

- Genotype recover rate for 50 pg of 2800 M DNA were $>95 \%$ on NGS of both autosomal and Y-STRs

Results

The number of typed samples per Autosomal markers

Results

The number of typed samples per Y-STR markers

Results

The number of typed markers for 23 autosomal STR markers obtained respectively by CE and NGS from 20 degraded DNA samples

Results

The number of typed markers for 23 Y-STR markers obtained respectively by CE and NGS from 20 degraded DNA samples

Summary

* The in-house NGS panels for autosomal and Y-STRs analysis was able to generate reliable STR genotypes even if the input DNA was as low as 50 pg of the 2800 M control DNA.
* NGS of STRs gained more than 5 typed markers on average than the CE methods on both autosomal and Y-STRs analysis for the 20 degraded DNAs.

Most of gains in the number of typed makers by NGS analysis of STRs for degraded DNA were mainly achieved in the long-length target in CE methods.

- NGS of STRs with small sized amplicons facilitates to increase discrimination power in the identification of old skeletal remains by obtaining quantitatively and qualitatively reliable STR genotypes.

