

Body F	luids and T	issues at a Crime Scene
 Can link 	sample donors	s with actual criminal acts
	Туре	Forensic relevance
Body fluids	Blood	Violence
	Semen	Sexual assault
	Saliva	Sexual assault e.g. licking, kissing or inoffensive stain
	Vaginal secretion	Sexual assault
	Menstrual blood	Sexual assault or inoffensive alternative scenario to violence
	Urine	Confirmation of sampled area
Touch	Skin	Confirmation of sampled area
-	Brain	Head injury
Organs	Heart, lung	Chest injury
	Kidney , liver	Abdominal injury

Ρι	blications
1.	Frumkin D <i>et al.</i> (2011) DNA methylation-based forensic tissue identification. Forensic Sci Int Genet 5, 517–524
2.	Lee HY <i>et al.</i> (2012) Potential forensic application of DNA methylation profiling to body fluid identification. Int J Legal Med 126, 55–62
3.	Madi T <i>et al.</i> (2012) The determination of tissue-specific DNA methylation patterns in forensic biofluids using bisulfite modification and pyrosequencing. Electrophoresis 33, 1736–1745
4.	Park JL <i>et al.</i> (2014) Identification of body fluid-specific DNA methylation markers for use in forensic science. Forensic Sci Int Genet 13, 147–153
5.	Lee HY <i>et al.</i> (2015) <u>Genome-wide methylation profiling and a multiplex construction</u> for the identification of body fluids using epigenetic markers. Forensic Sci Int Genet 17,
6.	Forat S <i>et al.</i> (2016) Methylation Markers for the Identification of Body Fluids and Tissues from Forensic Trace Evidence. PLoS One 11, e0147973
7.	Lee HY <i>et al.</i> (2016). DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood. Forensic Sci Int Genet.24, 75-82
8.	Jung SE <i>et al.</i> (2016) A <u>collaborative exercise on DNA methylation-based body fluid</u> typing. Electrophoresis.21, 2759-2766
9.	Holtkötter H <i>et al.</i> (2017) <u>Independent validation of body fluid-specific CpG markers and</u> <u>construction of a robust multiplex assay</u> . Forensic Sci Int Genet. 29, 261-268

omparison of 450K resu	Jits from various body fluids	
	,	
12 semen, 12 blood, 12 sallva	a, 3 vaginal fluid, 3 menstrual blood sample	s (GSE59505)
Comparison	Cut-off	No. of CpGs
<u>SE</u> vs. BL	Abs (delta_mean) ≥ 0.3, fdr. P < 0.05	64,079
1 <u>SE</u> vs. SA	Abs (delta_mean) ≥ 0.3, fdr. P < 0.05	64,305
<u>SE</u> vs. VF	Abs (delta_mean) ≥ 0.3, fdr. P < 0.05	54,062
<u>SE</u> vs. MB	Abs (delta_mean) ≥ 0.3, fdr. P < 0.05	45,310
BL vs. SA	Abs (delta_mean) ≥ 0.3, raw P < 0.05	9,100
BL vs. VF	Abs (delta_mean) ≥ 0.3, raw P < 0.05	442
BL vs. MB	Abs (delta_mean) ≥ 0.3, raw P < 0.05	556
SA vs. VF	Abs (delta_mean) ≥ 0.3, raw P < 0.05	620
SA vs. MB	Abs (delta_mean) ≥ 0.3, raw P < 0.05	371
<u>VF</u> vs. <u>MB</u>	Abs (delta_mean) ≥ 0.2, raw P < 0.05	<u>c</u>
2 SE vs. (BL, SA, VF, MB)	Abs (delta_mean) ≥ 0.5, fdr. P < 0.05	20,542
BL vs. (SA, VF, MB)	Abs (delta_mean) ≥ 0.3, raw P < 0.05	4,252
SA vs. (BL, VF, MB)	Abs (delta_mean) ≥ 0.3, raw P < 0.05	2,771
(VE MB) vs (BL SA)	Abs (delta mean) > 0.2 raw P < 0.05	60

lde	ent	ifica	ation	of B	ody	Fluid	d-Sp	ecific	CpG	s		
Corr	ipa	rison	of mer	nstrual	blood	l and v	aginal	fluid				
45 an	oK r id 3r	esults o d days o	of 3 vagi of menst	nal fluid trual ble	s and 3 o eding (G	of each i SE7728	menstrua 3)	al bloods	obtained	d fro	m the 19	st, 2nd
Comparison ^a					Cu	ıt-off			No. of CpGs			
3	MB	day 1 vs	. VF	ļ	Abs (delta	_mean) ≥	≥ 0.3, <i>P</i> < 0	.05, sd < 0	0.1	165		
MB day 2 vs. VF MB day 3 vs. VF		B day 2 vs. VF			Abs (delta_mean) ≥ 0.3, <i>P</i> < 0.05, sd < 0.1				0.1	31		
		A	Abs (delta_mean) \geq 0.2, $P < 0.05$, sd < 0.1					15				
					Mean bet	a values \pm SD ⁴				Gend	ome build_37	
Target	ID	SE (n=12)	BL (n = 12)	SA (n=12)	SK (n = 19)	VF (n=6)	MB-1 (n=3)	MB-2 (n = 3)	MB-3 (n=3)	Chr	Map info.	Gene
cg0502	1643	0.02 ± 0.01	$\textbf{0.08} \pm \textbf{0.03}$	$\textbf{0.06} \pm \textbf{0.02}$	$\textbf{0.23} \pm \textbf{0.08}$	0.05 ± 0.01	$\textbf{0.38} \pm \textbf{0.11}$	$\textbf{0.36} \pm \textbf{0.06}$	$\textbf{0.31} \pm \textbf{0.12}$	2	177029608	HOXD3
cg0200	9088	0.03 ± 0.01	$\textbf{0.02} \pm \textbf{0.01}$	$\textbf{0.40} \pm \textbf{0.21}$	$\textbf{0.70} \pm \textbf{0.03}$	0.02 ± 0.01	$\textbf{0.44} \pm \textbf{0.12}$	$\textbf{0.41} \pm \textbf{0.09}$	$\textbf{0.35} \pm \textbf{0.14}$	5	139228153	NRG2
cg14480	5338	0.02 ± 0.01	0.15 ± 0.04	0.11 ± 0.03	0.17 ± 0.10	0.07 ± 0.02	0.41 ± 0.11	0.38 ± 0.05	0.34 ± 0.20	8	99440279	KCNS2
cg1989	1592	0.03 ± 0.03	0.38 ± 0.04	0.06 ± 0.04	0.05 ± 0.03	0.09 ± 0.04	0.46 ± 0.13	0.36 ± 0.04 0.28 ± 0.06	0.34 ± 0.16 0.41 ± 0.18	10	145025004	CATAZ
cg0425	5276	0.02 ± 0.01	0.07 ± 0.02	0.04 ± 0.03	0.05 ± 0.02 0.05 ± 0.02	0.09 ± 0.07	0.41 ± 0.11	0.36 ± 0.07	0.28 ± 0.13	11	65314021	LTBP3
cg18023	8065	0.15 ± 0.10	$\textbf{0.39} \pm \textbf{0.03}$	$\textbf{0.10} \pm \textbf{0.06}$	$\textbf{0.20} \pm \textbf{0.05}$	0.06 ± 0.02	0.48 ± 0.13	0.43 ± 0.03	0.40 ± 0.19	11	94278603	FUT4
cg09694	5411	0.01 ± 0.00	0.02 ± 0.01	0.01 ± 0.00	0.05 ± 0.02	0.01 ± 0.00	$\textbf{0.41} \pm \textbf{0.10}$	$\textbf{0.35} \pm \textbf{0.06}$	$\textbf{0.28} \pm \textbf{0.14}$	12	58013517	SLC26A1
cg18069	9290	0.01 ± 0.01	0.02 ± 0.01	$\textbf{0.02} \pm \textbf{0.01}$	$\textbf{0.03} \pm \textbf{0.01}$	0.02 ± 0.00	$\textbf{0.35} \pm \textbf{0.12}$	$\textbf{0.32} \pm \textbf{0.10}$	$\textbf{0.22} \pm \textbf{0.13}$	12	58013539	SLC26A1
cg1656.	7290	0.04 ± 0.01	0.04 ± 0.01	0.03 ± 0.01	0.13 ± 0.05	0.04 ± 0.01	0.46 ± 0.11	0.44 ± 0.05	$\textbf{0.37} \pm \textbf{0.12}$	12	58013569	SLC26A1
cg2098	5399	0.13 ± 0.12	0.15 ± 0.03	0.07 ± 0.03	0.36 ± 0.05	0.07 ± 0.02	0.50 ± 0.12	0.50 ± 0.04	0.41 ± 0.18	15	65689263	IGDCC4
cg22320	J365	0.18 ± 0.14	0.07 ± 0.02	0.09 ± 0.06	0.26 ± 0.07	0.06 ± 0.02	0.37 ± 0.12	0.36 ± 0.04	0.33 ± 0.17	17	36718198	SRCINI
	\$538	0.06 ± 0.02	0.02 ± 0.00	0.03 ± 0.01	0.22 ± 0.06	0.03 ± 0.01	0.37 ± 0.11	0.34 ± 0.08 0.43 ± 0.07	0.27 ± 0.14 0.20 ± 0.21	17	/6128683	CNIATE
cg12/98	1675	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	u + 19 + 0.07	0.03 ± 0.02	0.34 ± 0.06	0.04 ± 0.01	0.45 ± 0.12	0.43 ± 0.07	0.39 ± 0.21	19	5130430	GINAID

DNA	A IVI	ethylation a	na PCR Prim	er Desi	gn			
		MothDrimer						
Post an ORIGINAL source see	imer.z.o	Clean miler	Product Size:	Min: 100	Opt: 200	Max: 300		
You don't need to modely your or SEALT SAATS	QUEDON (N.B. DURING RAA TICGAGAGCACT	et C to T) below parting. TORCEARCANTOSCARTATOACCORAAGACE TOTOACCENTETEDCT	Primer Tm:	Min: 50	Opt: 55	Max: 60		
ASSCIGLTSCAR CARGATAATTIC SECOCOCIDES	COCAGANGETODOAC TOACCETOETOAACA COCTOCOCTOCOCTOA	TOBORA GITT COSCILCT OF TACCHORA COSCILCT COSCILSION AGAIN ANSIA COSCILSION TORICTT NACCORRECT COSCILSION COSCILSION COSCILSION CONSTITUTION TORICCI ST CARCONNECTION COSCILSION COSCILSION CONSTITUTION	Primer Size	Min: 20	Opt: 25	Max: 30		
canamana	02/02/02/02/02/02	CARGACODERCTICTEC	Product CpCc:	1	Drimer Doly V:	6		
			Pilouder epos.	1	Primer Poly A.			
			Primer non-CpG C s:	4	Primer Poly 1:	8		
3 Vie QG island zweitrim	te pine sist	and 10 and 1 and 10 and	Primer non-Cp	G 'C's:	n-CnG 'C's i	n a primer		
General Parameters for Print	ner Selection				in-cpd C31			
Target (optional):	262.2	"itaat, nize", nash ar (360, 50)	This is importan	I his is important for discriminating betwee				
Excluded Regions (optional)		"man, size", such as (160, 50 x100, 50)	bisulfite-modifi	lor				
Number of output pairs (optional	Dr B.		incompletely m	adified DNA				
Product Sars	Min: 100	0 pt 200 1 [Max 300	(incompletely m	odified DNA	-			
Primer, Tas	Min: 50	0pr 55 Max 60						
Product CoGe:	1	Primer Poly 2: 15						
Primer and OpG Ca	4	Primer Folt T. 6		Ivie	,			
Parameters for MSP prime			5'UA	GGGGUGAAC	GGAGUTAU	UTG 3'		
1916 contraint	3			00 X 0 Z 4 S		and the second second		
CiG in primer	1							
Max.Tm.difference	5					CONT EI		
			3'GT	JUUUGUTTG	COTOGATO	GAU 5'		
					let			

