

Investigation into the Y-STR Typing Using Next Generation Sequencing

So Yeun Kwon^{1,2} · Eun Hye Kim^{1,2} · Hwan Young Lee¹ · Kyoung-Jin Shin^{1,2}

¹Department of Forensic Medicine, Yonsei University College of Medicine, Seoul, South Korea ²Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea

Introduction

Next generation sequencing (NGS) can produce massively parallel sequencing data for many targeted regions at high depths of coverage, which implies the possibility of successful application of NGS to forensic casework sample analysis. Until now, NGS studies were mainly progressed in autosomal STR (Y-STR) and it has been difficult to find studies of NGS on Y-STR previously. Therefore, in the present study, we constructed and evaluated NGS optimized Y-STR multiplex system including 24 Y chromosomal markers (DYS19, DYS385ab, DYS389I, DYS389I, DYS389I, DYS390, DYS391, DYS392, DYS393, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS576, DYS576, DYS576, DYS635, DYS643, GATA-H4 and M175). And we scrutinized the genotyping concordance between NGS and capillary electrophoresis method with 149 unrelated Korean males. Finally, we present the identified sequence variations and the results of statistical analysis of 23 Y-STRs in Korean males.

Materials and Methods

1. DNA samples

DNA was extracted from buccal swab samples of 149 unrelated Korean males using QIAamp DNA Mini Kit (Qiagen) and quantified using NanoDrop[®] ND-1000 Spectrophotometer (NanoDrop Technologies) according to the manufacturer's instructions. Finally diluted 1 ng/ul of DNA was prepared and used. The study was approved by the Institutional Review Board of Severance Hospital, Yonsei University in Seoul, Korea.

3. Preparation of NGS libraries

We conducted two-step PCR amplifications to generate a library using primers with a modification referring to the sequence information of Nextera[®] system (Illumina). The first PCR targeted the Y chromosomal STR itself, and primer sequences included Y-STR-specific sequences and read sequences. A second PCR was performed to add indices and platform-specific sequences. See

5. NGS run and data analysis

The barcoded libraries were normalized to 10nM and then pooled in equal volumes. Finally, the pooled library was sequenced on MiSeq[™] (Illumina) using a MiSeq Reagent Kit v2, 2x250bp (Illumina). NGS data analysis basically follows the protocol presented by Bornman et al (Biotechniques, 2012). The process of NGS data analysis used in this study were illustrated in Fig. 2. The STR profiles obtained by two CE methods – the AmpFℓSTR[®] Yfiler[™] Kit (Applied Biosystems) and in-house Euplex Y15 system were used as reference data for comparing the STR typing results from NGS.

2. Y-STR multiplex PCR system

A multiplex PCR system included the PowerPlex[®] Y23 (Promega) Y-STRs and M175 shown in Fig. 1. Primers were designed using the Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/) program such that the amplicon sizes of 24 targeted markers were less than 253 bp, and the primers did not bind to the region with a greater than 1% mutation rated based on the NCBI SNP information (http://www.ncbi.nlm.nih.gov/SNP/). The multiplex system was designed for sufficient sensitivity and specificity from 100 pg of genomic DNA and a male-female mixture sample with a ratio of 1:1000.

detailed information on poster No. 79.

1) The first PCR - multiplex PCR was performed with 30 thermal cycles from each 1 ng of the sample and appropriate concentration of primers.

2) The second PCR - indexing PCR was performed with 17 thermal cycles from each 1.0 µl of 100-fold diluted the first PCR products and Nextera XT Index Kit (Illumina).

Following PCR cleanup with 1.2× Agencourt[®] AMPure[®] XP beads (Beckman Coulter), the libraries were quantified using KAPA library quantification kits (KAPA Biosystems) and Agilent 2100 Bioanalyzer.

6. Statistical analysis

Different haplotypes and unique haplotypes were calculated using counting method. Haplotype diversities and discrimination capacities were estimated using Nei's formulas. The statistical parameters were compared between 17 Yfielr[™] and 23 Powerplex[®] Y23 loci. Moreover, forensic efficiency information was assessed by gene diversity and haplotype diversity between CE and NGS.

Results

Fig. 1. Allelic size range of 24 Y chromosomal markers

Fig. 3. Relevant coverage between 24 Y chromosomal marker

0⁴⁵¹⁹04385 83891 8390 8391 8390 8391 8393 831 839 843 9543 9548 9545 9545 9553 7548 9510 9516 8535 9563 844 4115

The relative reads counts in average coverage were calculated by STRait Razor program. The minimum and maximum coverage were observed on GATA-H4 and DYS389I, respectively. The difference was in less than five times.

Fig. 4. Comparison of genotype between CE and NGS analysis

Y-STR genotypes of 149 unrelated Korean males obtained from NGS were concordant with CE profiles except for a sample. One sample was identified that an adenine was inserted at 5' flanking region in 16 allele of DYS576 but shown as16.1 in CE profile.

2) DYS448

Allele	Sub-allele	Structure	Frequency
Null	Null		0.007
17	17a	[AGAGAT] ₁₀ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₇	0.020
17	17b	[AGAGAT]9 AGAGAG ATAGAG [AGATAG]3 ATAGAT AGAGAA [AGAGAT]8	0.007
10	18a	[AGAGAT] ₁₀ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₈	0.369
18	18b	[AGAGAT] ₁₁ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₇	0.013
19	19a	[AGAGAT] ₁₀ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₉	0.020
	19b	[AGAGAT] ₁₁ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₈	0.221
00	20a	[AGAGAT] ₁₁ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₉	0.141
20	20b	[AGAGAT] ₁₂ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₈	0.087
04	21a	[AGAGAT] ₁₁ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₁₀	0.020
21	21b	[AGAGAT] ₁₂ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₉	0.074
22	22a	[AGAGAT] ₁₂ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₁₀	0.013
22	22b	[AGAGAT] ₁₃ [ATAGAG] ₂ [AGATAG] ₃ ATAGAT AGAGAA [AGAGAT] ₉	0.007

3) DYS635

Allele	Sub-allele	Structure	Frequency
19	19	[TAGA] ₁₀ TACA [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.034
20	20a	[TAGA] ₁₀ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.255
20	20b	[TAGA] ₁₁ TACA [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.013
	21a	[TAGA] ₁₁ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.450
21	21b	[TAGA] ₇ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.007
	21c	[TAGA] ₁₂ TACA [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.007
	22a	[TAGA] ₈ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.020
22	22b	[TAGA] ₁₂ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.121
	22c	[TAGA] ₁₁ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₅	0.007
00	23a	[TAGA] ₁₃ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.034
23	23b	[TAGA] ₉ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.007
24	24	[TAGA] ₁₄ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.040
25	25	[TAGA] ₁₅ [TACA] ₂ [TAGA] ₂ [TACA] ₂ [TAGA] ₄	0.007

The 23 Y-STR and Y-M175 markers were amplified simultaneously in a size range of 85-253bp. AmpF{STR[®] Yfiler[™] loci are marked in blue boxes and additional 6 loci from PowerPlex[®] Y23 are marked in red boxes. M175 marker is indicated within yellow box, which is a representative Y-SNP marker of Yhaplogroup O. Most of amplicons were less than 190bp and those of DYS389II, DYS385ab and DYS448 were less than 253bp.

Fig. 2. Workflow of NGS data processing

Table 1. Examples of alleles with observed sequence variation

1) DYS389II

Allele	Sub-allele	Structure	Frequency
26	26	[TCTG] ₄ [TCTA] ₁₀ N ₄₈ [TCTG] ₃ [TCTA] ₉	0.007
	27a	[TCTG] ₄ [TCTA] ₁₀ N ₄₈ [TCTG] ₃ [TCTA] ₁₀	0.013
07	27b	[TCTG] ₄ [TCTA] ₁₁ N ₄₈ [TCTG] ₃ [TCTA] ₉	0.074
21	27c	[TCTG] ₄ [TCTA] ₁₂ N ₄₈ [TCTG] ₃ [TCTA] ₈	0.007
	27d	[TCTG] ₅ [TCTA] ₁₀ N ₄₈ [TCTG] ₃ [TCTA] ₉	0.007
	28a	[TCTG] ₄ [TCTA] ₁₀ N ₄₈ [TCTG] ₃ [TCTA] ₁₁	0.007
20	28b	[TCTG] ₄ [TCTA] ₁₁ N ₄₈ [TCTG] ₃ [TCTA] ₁₀	0.067
20	28c	[TCTG] ₄ [TCTA] ₁₂ N ₄₈ [TCTG] ₃ [TCTA] ₉	0.148
	28d	[TCTG] ₄ [TCTA] ₁₃ N ₄₈ [TCTG] ₃ [TCTA] ₈	0.007
	29a	[TCTG] ₄ [TCTA] ₁₁ N ₄₈ [TCTG] ₃ [TCTA] ₁₁	0.154
	29b	[TCTG] ₄ [TCTA] ₁₂ N ₄₈ [TCTG] ₃ [TCTA] ₁₀	0.060
29	29c	[TCTG] ₄ [TCTA] ₁₃ N ₄₈ [TCTG] ₃ [TCTA] ₉	0.128
	29d	[TCTG] ₅ [TCTA] ₁₀ N ₄₈ [TCTG] ₃ [TCTA] ₁₁	0.027
	29e	[TCTG] ₅ [TCTA] ₁₁ N ₄₈ [TCTG] ₃ [TCTA] ₁₀	0.034
	30a	[TCTG] ₄ [TCTA] ₁₁ N ₄₈ [TCTG] ₃ [TCTA] ₁₂	0.007
	30b	[TCTG] ₄ [TCTA] ₁₂ N ₄₈ [TCTG] ₃ [TCTA] ₁₁	0.087
	30c	[TCTG] ₄ [TCTA] ₁₃ N ₄₈ [TCTG] ₃ [TCTA] ₁₀	0.013
30	30d	[TCTG] ₄ [TCTA] ₁₄ N ₄₈ [TCTG] ₃ [TCTA] ₉	0.020
	30e	[TCTG] ₅ [TCTA] ₁₁ N ₄₈ [TCTG] ₃ [TCTA] ₁₁	0.054
	30f	[TCTG] ₅ [TCTA] ₁₂ N ₄₈ [TCTG] ₂ [TCTA] ₁₁	0.007
	30g	[TCTG] ₅ [TCTA] ₁₂ N ₄₈ [TCTG] ₃ [TCTA] ₁₀	0.007
	31a	[TCTG] ₄ [TCTA] ₁₂ N ₄₈ [TCTG] ₃ [TCTA] ₁₂	0.007
31	31b	[TCTG] ₄ [TCTA] ₁₃ N ₄₈ [TCTG] ₃ [TCTA] ₁₁	0.027
	31c	[TCTG] ₅ [TCTA] ₁₂ N ₄₈ [TCTG] ₃ [TCTA] ₁₁	0.034

Table 2. Comparison between CE and NGS analysis

Comparison of the number of alleles (n=149)
 Comparison of gene diviersities (n=149)

Loci	CE	NGS	Fold	change	Loci	CE	NGS	Changes
DYS389II	6	24		+4.00x	DYS389II	0.738	0.915	+0.177
DYS448	7	13		+1.86x	DYS437	0.423	0.599	+0.176
DYS635	7	13		+1.86x	DYS438	0.652	0.726	+0.074
DYS390	6	10		+1.67x	DYS448	0.738	0.785	+0.047
DYS437	3	5		+1.67x	DYS635	0.692	0.718	+0.026
GATA-H4	4	5		+1.25x	DYS390	0.660	0.674	+0.014
DYS389I	5	6		+1.20x	GATA H4	0.620	0.625	+0.006
DYS438	6	7		+1.17x	DYS389I	0.666	0.668	+0.003
The most variable sequences were observed in DYS389II, and following by DYS448 and DYS635.				The most diversity wa +0.177, and	significa as observ d followi	nt chang ved in DY ng by D`	e of gene S389II with YS437 and	

DYS438.

Table 3. Haplotype analysis of Yfiler and PowerPlex Y23

Final report Comparison of Y-STR genotypes between CE and NGS Verification of sequence variation 	Allele drop-in/ou Extra allele
3. Statistical analysis	

Basically, the genotypes were compared with CE method and NGS data. The percentage coverage values were determined by dividing an assigned coverage for each allele by the total coverage of the locus. Y-STR alleles could be determined when 20% of total coverage was used as a threshold

N₄₈: CATTATACCTACTTCTGTATCCAACTCTCATCTGTATTATCTATGTA

Sequence variations were observed in 8 Y-STRs (DYS389II, DYS448, DYS635, DYS390, DYS437, Y-GATA-H4, DYS389I and DYS438) in 149 Korean males. The largest number of sequence variation was observed on DYS389II. DYS448 and DYS635 also had sequence variations in the following order.

	AmpFℓSTR [®] Yfiler™ (17) ^a	PowerPlex [®] Y23 (23)
No. of samples	149	149
No. haplotypes	145	149
No. unique haplotypes	142	149
Discrimination Capacity (%)	97.32	100.00
Haplotype diversity	0.99955	1.00000

^a Number of parenthesis is number of Y-STRs

Haplotype analysis for Yfiler[™] and PowerPlex[®] Y23 loci produced the same statistical values in CE and NGS methods.

Conclusion

- We constructed a new multiplex PCR system optimized for NGS analysis including 24 Y chromosomal markers with small-sized amplicon.
- Y-STR genotypes from NGS analysis were consistent with CE profiles in a total of 149 unrelated Korean males except for a sample with 16.1 allele of DYS576.
- Sequence variations which differentiate alleles with the same length were observed in 8 Y-STR. The largest number of sequence variation was observed on DYS389II in Korean males.
- Therefore, NGS analysis of Y-STR using newly developed multiplex PCR system could provide additional genetic information such as discriminative allele information for forensic investigation.

Acknowledgments

This research was supported by the Bio & Medical Technology Development Program of the National Research Foundation funded (NRF) by the Ministry of Science, ICT & Future Planning (No. 2012-0009833)